top of page
​​

Development of ultra-high ion-selective polymer composite membrane for redox flow batteries

 

     Our research goal is to develop a high-ion selectivity polymer electrolyte membrane with improved proton conductivity, a significantly low crossover of active redox species, high chemical stability in acidic conditions, and high mechanical stability, which exhibits high discharge capacity with long-term cyclability, low self-discharge rate, and high energy efficiency for Redox Flow Batteries (RFBs).

​

  1.  S. I. Hossain, M. A. Aziz, D. Han, P. Selvam and S. Shanmugam*, J. Mater. Chem. A, 6 (2018) 20205.

  2.  M. A. Aziz and S. Shanmugam*, J. Mater. Chem. A, 6 (2018) 17740.

  3.  M. A. Aziz and S. Shanmugam*, J. Mater. Chem. A, 5 (2017) 16663.

  4.  M. A. Aziz, K. Oh and S. Shanmugam*, Chem. Commun, 53 (2017) 917.

  5.  M. A. Aziz and S. Shanmugam*, J. Power Sources, 337 (2017) 36.

  6.  D. Han, E. K. Gikunoo, S. Shanmugam*, J. Mater. Chem. A, 10 (2022) 18598.

  7.  E. K. Gikunoo, D. Han, M. Vinothkannan, and S. Shanmugam*, J. Power Sources, 563 (2023) 232821. 

​

 

Design and development of cost-effective and energy-efficient electrocatalysts for the electrosynthesis of value-added chemicals from atmospheric nitrogen and air pollutants

 

     Ammonia is a building block and vital chemical in modern chemical industries such as fertilizer, pharma, and textile. Due to the versatile application of ammonia, it has been produced more than 150 Mt worldwide by different strategies. Our research aims to design and develop stable, highly active, and selective electrocatalysts to electroconvert atmospheric nitrogen and air pollutants (NOx) into ammonia. In addition, we are also interested in the electrosynthesis of other value-added chemicals such as Hydroxylamine, Urea, etc., 

​​

  1.  D. K. Yesudoss, G. Lee, S. Shanmugam*, Appl. Catal. B., 287 (2021) 119952.

  2.  D. K. Yesudoss, Hoje Chun, Byungchan Han*, S. Shanmugam*, Appl. Catal. B.,  304 (2022) 120938

  3.  T. Muthusamy, S. S. Markandaraj, S. Shanmugam*, J. Mater. Chem. A, 10 (2022) 6470. 

  4.  S. S. Markandaraj, T. Muthusamy, S. Shanmugam*, Advanced Science, (2022) 2201410.

  5.  D. Dhanabal, S. S. Markandaraj, S. Shanmugam*, ACS Catal. 2023, 13, 13, 9136–9149.

  6.  Y. Song, R. A. Maia, V. Ritleng, B. Louis, S. Shanmugam*, ACS  Appl. Energy Mater. 2024.

​

Development of  membrane electrode assembly for high current density and low humidity conditions operating PEMFC

​

      In a fuel cell, the chemical energy is directly converted to electricity; fuel cell can operate at much higher efficiencies than internal combustion engines, extracting more electricity from the same amount of fuel. Fuel cells are extremely attractive energy conversion devices for transportation and portable applications because of their high efficiency and lower emission properties. Among several types of fuel cells, polymer electrolyte membrane fuel cells (PEMFC) have been regarded as promising options for electrical vehicles.

 

    The polymer electrolyte fuel cells operating under low relative humidity and elevated temperature have received an attractive interest in improving electrode kinetics, enhancing anode resistance to CO poisoning, and simplifying the system's thermal management. In this research, we created proton transport channels in electrolyte membranes by incorporating porous hygroscopic metal oxide nanotube fillers in order that the polyelectrolyte ionomer can be exposed to the inner surface of the tubes was found an effective approach to enhance the proton conductivity of electrolyte membranes. The main advantage of introducing porous hygroscopic tubular fillers in electrolyte membranes is that they facilitate proton transport channels in the membrane and suppress the mass transport overpotential of PEFCs operated under low RH and elevated temperature.

​

  1. K. Oh, O. Kwon, B. Son*, S. Shanmugam*, J. Membr. Sci., 583 (2019) 103-109.

  2. T. Yoo, M. A. Aziz, K. Oh, S. Shanmugam*, J. Membr. Sci., 542 (2017) 102-109.

  3. K. Oh, B. Son*, J. Sanetuntikul, S. Shanmugam*, J. Membr.Sci., 541 (2017) 386-392.

  4. K. Ketpang, K. Oh, S.C. Lim, S. Shanmugam*, J. Power Sources 329 (2016) 441-449.

  5. A. K. Sahu, K. Ketpang, S. Shanmugam*, K. Osung, S. L. Lee, H. Kim*, J. Phys. Chem. C 120 (2016) 15855.

  6. K. Oh, K. Ketpang, H. Kim, S. Shanmugam*, J. Membr. Sci., 507 (2016) 135-142.

  7. K. Ketpang, S. Shanmugam*, C. Suwanboon, N. Chanunpanich, and D.H. Lee, J. Membr. Sci., 493 (2015) 285-298.

  8. Y. Kim, K. Ketpang, S. Jaritphun, J.-S. Park, S. Shanmugam,* J. Mater. Chem. A 3 (2015) 8148-8155.

  9. K. Ketpang, K. Lee, S. Shanmugam* ACS Appl. Mater & Interfaces 6 (2014) 16734.

​

  

Design cost-effective catalysts for the PEM water electrolysis

       

       Our research goal is to design highly active catalysts for the PEM water electrolyzer to produce pure hydrogen using renewable resources, such as water.  Producing a pure form of hydrogen for the fuel cells is one of the important issues.  Hence, producing a pure form of hydrogen using a type of electrolyzer is one of the effective ways. In order to address the major challenges for PEMC electrolyzers, such as costly electrocatalysts and sluggish oxygen oxidation reactions, effective catalysts are needed.  Our research focuses on metal sulfides as water oxidation catalysts, which are also promising candidates for the OER and HER for PEMC water splitting to give low power consumption per standard volume of hydrogen with durability that meets the commercialization.

​​

  1. A. Sivanantham, P. Ganesan, L. Estevez, B. P. McGrail, R. K. Motkuri S. Shanmugam*, Adv. Ener. Mater. 8 (2018) 20172838.

  2. P. Ganesan, A. Sivanantham, S. Shanmugam*, J. Mater. Chem. A 6 (2018) 1075-1085. 

  3. A. Sivanantham, S. Shanmugam*, Appl. Catal. B. 203 (2017) 485.

  4. P. Ganesan, A. Sivanantham, S. Shanmugam*, ACS Appl. Mater & Inter., 9 (2017) 1241-12426.

  5. P. Ganesan, A. Sivanantham, S. Shanmugam*, J. Mater. Chem. A 4 (2016) 16394.

  6. A. Sivanantham, P. Ganesan, S. Shanmugam*, Adv. Funct. Mater. 26 (2016) 4661.

  7. V. Ahilan, M. Prabu, S. Shanmugam*, ACS Applied Mater & Inter., 8 (2016) 6019.

  8. S. Hyun, V. Ahilan, H. Kim, S. Shanmugam*, Electrochem. Commun, 63 (2016) 44.

  9. P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam* ACS Catal. 5 (2015) 3625.

 

​

Development of Non-precious cathode catalysts

 

      Our research focuses on developing a non-precious cathode catalyst for proton exchange fuel cells. They especially designed a new electrode material based on metal coordinated with a nitrogen-doped carbon-based catalyst (M-N-C) with extremely high electrocatalytic activity for oxygen reduction reaction (ORR) in an acidic media. In addition, these materials encompass superior long-term stability and CO-tolerance in ORR compared to the Pt catalyst.

​

  1. J. Sanetuntikul, S. Hyun, P. Ganesan, S. Shanmugam*, J. Mater. Chem. A  6 (2018) 24078-24085.  

  2. J. Sanetuntikul,  C. Chuaicham, J. W. Choi, S. Shanmugam* J. Mater. Chem. A. 3 (2015) 15473.

  3. G. Jo, J. Sanetuntikul, S. Shanmugam* RSC Adv., 5 (2015) 53637.

  4. J. Sanetuntikul, S. Shanmugam, Nanoscale 7 (2015) 7644

  5. P. Ganesan, M. Prabu, J. Sanetuntikul, S. Shanmugam*, ACS Catal. 5 (2015) 3625.

  6. J. Sanetuntikul, T. Hang, S. Shanmugam* Chem. Commun., 50 (2014) 9473.

  7. J. Sanetuntikul, S. Shanmugam* Electrochimica Acta 119 (2014) 92

​

​

.

​

bottom of page